
JOURNAL OF MATERIALS SCIENCE35 (2000 ) 723– 734

A comparison of indentations of different size

and geometry in single-quasicrystalline AIPdMn

B. WOLF
TU Dresden, Institut für Kristallographie und Festkörperphysik, 01062 Dresden, Germany
E-mail: wolf@physik.phy.tu-dresden.de

M. SWAIN
Commonwealth Scientific and Industrial Research Organization (CSIRO), Division of Applied
Physics, National Measurement Laboratory, Lindfield, NSW 2070, Australia

M. KEMPF
Universität des Saarlandes, Institut für Werkstoffwissenschaften, 66041 Saarbrücken,
Germany

P. PAUFLER
TU Dresden, Institut für Kristallographie und Festkörperphysik, 01062 Dresden, Germany

The study compares impressions into one and the same single-quasicrystalline
Al70Pd20Mn10 sample (surface of fivefold symmetry) that were performed by spherical and
pointed indenters (Vickers- and corner-of-a-cube-geometry) and investigated using Atomic
Force Microscopy (AFM). The Meyer hardness number was found to vary with indentation
size in a manner similar to materials that work harden, though this behavior must have a
different physical origin: for spherical indentations the hardness number slightly increases
with increasing load (Meyer hardness evolution), whereas for pyramid-shaped indenters a
considerable hardness increase in case of decreasing load can be stated. Spherical
indentations show little piling-up only in contrast to pointed indentations where huge
elevations surrounding the indent developed. Different degrees of lateral cracking can
account for this observation. In case of Vickers indentations the material breaks into
segments which display mutual shearing. Distinct differences can also be noticed with
respect to the volume balance between the apparent piled-up volume around the
impression and the volume of the displaced material. This balance proves positive for
pyramidal and negative for spherical impressions. C© 2000 Kluwer Academic Publishers

1. Introduction
Though quasicrystals were discovered by Shechtman
et al. fifteen years ago [1] broad practical application
of quasicrystals is still missing. Among other obsta-
cles insufficient mechanical properties, low fracture
toughness and extreme brittleness [2] in particular,
prove an obstacle for industrial use. However, outstand-
ing hardness, small friction and low adhesion make
quasicrystals promising candidates for tribological
application [3].

Room temperature studies of quasicrystal hardness
may therefore provide data of both scientific and tech-
nological interest. Most mechanical research at room
temperature has been devoted to tribology of polyqua-
sicrystalline layers or coatings containing quasicrys-
talline phases [4]. If mechanical properties of single-
quasicrystals are addressed recent activities are focused
on investigations at elevated temperatures (>900 K)
where notable degrees of plasticity were found [5]. Less
attention has been paid to room temperature properties

of single-quasicrystals so far, which absolutely differ
from properties beyond the brittle-to-ductile transition.
It seems to be accepted in common that dislocations
and plasticity play a negligible role in room tempera-
ture deformation. Wollgartenet al. [6] performed room
temperature Vickers indentations into AlPdMn single-
quasicrystals and investigated the surroundings of the
impressions by TEM. It turned out that the indenta-
tion resulted in randomly oriented polygrained material
without phase transformation. The individual grains ex-
hibited sizes ranging from 10 to 500 nm. No evidence
for dislocation involvement in the deformation process
could be found. The deformation was expected to pro-
ceed via grain boundary sliding, a picture also used in
this work.

For crystalline materials it is well known that the
hardness depends on both indentation size and geom-
etry [7] owing to work hardening and differences in
the stress and strain distribution around the indent. It
is therefore of physical interest to study indentation
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size and geometry effects in quasicrystals where the
deformation at room temperature differs from classical
plastic deformation phenomena.

In order to obtain comparable results the use of one
and the same sample in all experiments is desirable.
Sample dimensions of some millimeters are required
to facilitate x-ray orientation, to enable appropriate
surface preparation, and to ensure a variety of inden-
tations without mutual interaction. Thus icosahedral
Al70Pd20Mn10 (in the following referred to as AlPdMn
for short), from which single-quasicrystalline material
in large quantities (cm3-range) is available [8], has been
chosen as a test specimen.

The brittle-to-ductile transition temperature of
AlPdMn is 0.87Tm [9] (Tm: homologous melting tem-
perature), which is comparable to other quasicrystals,
but very high if compared to crystalline materials. Be-
low Tm the hardness is much higher than the values of
the elemental constituents but even higher than those of
the corresponding intermetallic compounds [10]. In de-
formation experiments above 0.8Tm strong work soft-
ening was observed [5]. It is therefore desirable to sup-
plement the results presented in this paper by hardness
studies in this temperature range in order to investigate
the influence of work softening on indentation size and
geometry effects. This has to be the subject of a sep-
arate work since the high temperatures require special
precautions to avoid indenter damage.

2. Experimental conditions
The AlPdMn material under investigation was
manufactured by Czochralski technique at IFF/
Forschungszentrum J¨ulich [8]. From a single-quasi-
crystalline cylinder (normal parallel to the axis of five-
fold symmetry) a spherical disc of 6 mm in diameter
and 2 mm in thickness was cut by a diamond wire saw.
The sample surface was then ground by SiC paper and
polished using diamond suspension involving prepa-
ration steps of 6, 3, 1 and 0.3µm finish. The Laue
backscattering technique was used to check the sample
orientation in normal and azimuthal direction.

Since nanoindentations with penetrations smaller
than 20 nm were performed the quasicrystallinity close
to the surface had to be checked. AES depth profil-
ing using a PHI microprobe and Ar+-ion sputtering re-
vealed an oxide layer of about 3 nm thickness, mainly
consisting of Al2O3 (Fig. 1). The oxide layer thickness
was estimated from both bulk signal attenuation of the
AES-peaks of Al (unoxidized) and Pd, and from the
sputtering time necessary to remove the oxide.

A chemical composition according Al70Pd20Mn10
is—however—no sufficient proof for the correspond-
ing quasicrystalline phase. From x-ray diffraction un-
der grazing incidence [11] (in order to obtain increased
surface sensitivity) a phase purity of more than 90%
within the analyzed subsurface layer of 200 nm thick-
ness could be inferred resulting to the conclusion that
a distorted layer—if it exists—should be thinner than
20 nm. Thus the nanohardness data presented in this
paper should reflect the properties of the quasicrystal-
line phase.

Figure 1 AES depth profiling of the AlPdMn surface after polishing:
The Auger peak-to-peak heights (APPH values) of Pd, Al (unoxidized,
i.e. without chemical shift),O and C are shown versus sputter time
(lower scale), and versus depth (upper scale).

At TU Dresden a microhardness tester after Hane-
mann attached to an optical microscope (Zeiss Neophot
II) was used for Vickers indentations in the force range
of 0.1 to 1 N.

Nanoindentations (corner-of-a-cube diamond inden-
ter, force range 0.1 to 7 mN) were performed us-
ing a Hysitron electrostatic transducer attached to a
TopoMetrix Explorer AFM. The basic constituent of
this system is a three plate capacitor the mid plate of
which carries the diamond mounted onto a stylus. A
voltage between the mid and the outer drive plate per-
mits to generate a defined driving force for indentation,
whereas the capacity serves as a length sensor. Further
details of the Hysitron hardness tester are described
in ref. [12]. The experiments with the Hysitron sys-
tem took place at Institut f¨ur Werkstoffwissenschaften,
Universität des Saarlandes, Saarbr¨ucken.

For spherical indentations a UMIS 2000 submicrom-
eter indentation system was taken advantage of at
CSIRO, Division of Applied Physics, Lindfield, Aus-
tralia. In this machine a spheroconical diamond inden-
ter based on a 90◦ cone was applied. The radius of cur-
vature was 5µm as examined by SEM and temporarily
in situchecked by indentation of standard samples. The
UMIS tester was run in the multiple partial unloading
mode, using an unloading of 50% after each increment
in load. For further details of the indenter and extended
discussion of the technique see refs. [13, 14].

In case of Vickers testing the microhardness was ob-
tained from the impression area as determined after-
wards by optical microscopy and AFM. The other tech-
niques involvedin situdepth sensing which permits the
recording of the load-penetration-curve for both load-
ing and unloading. The impression area (contact area)
can be inferred from contact depth and indenter geom-
etry after appropriate correction for elastic recovery,
hence there is no direct need for impression imaging
which requires time-consuming relocalization of the
indents. On the other hand the elastic modulus is also
accessible from these measurements. For comparison
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the impression area was determined by AFM in those
cases where the indents could be relocalized.

The time schedule of all indentations with pyramidal
indenters was 15 s loading, 10 s holding of the load,
and 15 s unloading. Under these conditions thermally
induced phase transformations in the vicinity of the
indent can be excluded unless the dimension of the im-
pression is in the mm-range. This statement is based on
the following consideration: An upper limit of the heat
Q created by indentation during loading timeτ is

Q ≈ HV ≈ Hh3
p (1)

with H being the (average) hardness andV the volume
of the displaced material.V is of the order ofh3

p (hp:
penetration depth). The heat diffusion lengthL Q may
be written

L Q = (τλ/ρc)1/2 = (τa)1/2 (2)

with: λ: heat conductivity,ρ: density,c: specific heat
capacity,a: temperature conductance. Within the time
τ the heatQ spreads into a volumeVQ according to

VQ = A0L Q ≈ h2
pL Q

(hpÀ L Q, A0: superficial impression area) (3)

VQ = 2/3πL3
Q ≈ L3

Q (hp¿ L Q) (4)

The mean temperature raise1T is then given by

1T = Q/ρVQc (5)

1T = (H/ρc)(hp/L Q)

= γ (hp/L Q); (hpÀ L Q) (6)

1T = (H/ρc)(hp/L Q)3

= γ (hp/L Q)3; (hp¿ L Q) (7)

The abbreviationγ has been used forH/ρc. It
turns out that1T scales with (hp/L Q) for hpÀ L Q,
and with (hp/L Q)3 for hp¿ L Q. For H = 10 GPa,
ρ= 5× 103 kg m−3, andc= 2× 102 J/(kg K) we ob-
tainγ = 104 K. Forτ = 15 s andλ= 1 W/(m K) the heat
diffusion lengthL Q amounts toL Q= 4 mm. Thus the
criterionhp¿ L Q is fulfilled in all our experiments. For
penetrations smaller than 4µm the temperature raise
is less than 10−5 K. (A penetration of 1 mm, however,
may result in melting of the impressed material.) The
outcome of the above considerations is that some possi-
ble structural changes must be pressure induced rather
than originating from thermal processes.

AFM investigations were performed using a com-
mercial Nanoscope III (dimension 3000) atomic force
microscope of Digital Instruments.

3. Results and discussion
3.1. Evolution of hardness number
For a better comparison of hardness data obtained from
impressions of different geometry the Meyer hardness,
i.e. the force over the impression projection area, is

exclusively used in the following. This unit has the
physical meaning of the mean pressure inside the de-
formation zone. Vickers and Brinell hardness are de-
fined according force over superficial impression area.
The latter is based on the indenter geometry, whereas
the impression itself may considerably differ from the
indenter shape, particularly in case of small indenta-
tions (shallowing, sample anisotropy). For this reason
Vickers and Brinell hardness values in the original sense
are difficult to handle and to compare.

3.1.1. Vickers microhardness
The Vickers mean pressure exhibits a slight tendency
of hardness increase with decreasing load in the investi-
gated force range from 0.1 to 1.2 N. The mean pressure
is 9.6 and 9.1 GPa for 0.1 and 1.2 N load, respectively.
The impression projection area was gained from the
diagonals measured by both optical microscopy and
AFM.

3.1.2. Spherical indentation
Fig. 2 displays a typical load-penetration-curve for a
maximum force of 100 mN. The upper curve (crosses)
represents the full-load-data, whereas the lower curve
(squares) comprises the “half-load-points”, since an un-
loading of 50% was performed after each increment in
force. According Hertz the unloading curve is theoret-
ically described by a (forceF)∼ (depthh)3/2 law [15].
This relation is in practice well obeyed, even in case of
deviations from spherical indenter geometry (see also
next subchapter). Thus an unloading curveF ∼ h3/2

can be fitted to each pair of points (load; load/2) as
represented by the bold curve for an example in Fig. 2.
The partial unloading permits to determine the stiffness
and the true contact area for every data point, hence
allowing for the calculation of depth depending hard-
ness and elastic modulus. With the following notion:
hf1: penetration depth under full load;hhu: penetration
depth after half unloading;hfu: penetration depth after
full unloading;δ: elastic recovery;F : load; R: sphere
radius, we obtain:

δ = hf1 − hfu (8)

F = constδ3/2 (9)

F

2
= const (hhu− hfu)3/2 (10)

δ = (hf1 − hhu)/(1− 0.52/3)

= 2.703(hf1 − hhu). (11)

Equation 11 permits the determination of the full elas-
tic recovery for each set of measured data (F , hf1,
hfu). According Hertz [15] the contact depthhp may be
written

hp = hfu + δ
2

; (12)

the chordal radiusr of the impression is then

r = (hp(2R− hp))1/2 ≈ (2Rhp)1/2 (13)
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Figure 2 Force-penetration-plot for a spherical indentation test with multiply partial unloading (50% unloading after each increment in load). The
crosses represent the total penetration, whereas the squares indicate the remaining penetration after 50% unloading (hhu). The fit of a full unloading
curve with the indication ofhf1, hhu, hfu andhp is drawn for an example.

and the contact areaAc becomes

Ac = πhp(2R− hp) ≈ 2πRhp. (14)

The stiffnessSi of initial unloading is given by

Si = (d F/dh)i = (3/2)(F/δ) (15)

and is related to the contact areaAc and to the effective
modulusEr according to

S= 2Er(Ac/π )1/2 = 2Err, (16)

where

Er = (Si/2)/(Ac/π )1/2

= 3F/4r δ = 3/4H (πAc)
1/2/δ. (17)

The effective modulusEr describes the situation
whereby both sample and indenter are deformed elas-
tically. Er is defined according to

1/Er =
(
1− ν2

i

)
/Ei +

(
1− ν2

s

)
/Es (18)

with subscript i denoting the indenter and s the sam-
ple (ν: Poisson number). The diamond related data are
ν= 0.07 andE= 1140 GPa [16]. From literature the
following AlPdMn bulk data have been determined:
ν= 0.25 andE= 182 GPa [17].

The results of our calculation are shown in Fig. 3,
where the modulus and the mean pressure (hardness)
are plotted versus penetration depth (Fig. 3a and b,
respectively). The constant value ofE close to the
literature value [17] indicates, that the experimental
results are reliable. Furthermore the material is ho-
mogeneous with depth, and theE-determination is
not affected by cracking. The slight deviation close

Figure 3 Depth dependent hardness (mean pressure, upper part) and
corresponding values of theE-modulus (lower part) as derived from
data of Fig. 2.

to the surface may be attributed to the oxide surface
layer. A discontinuity inH occurs when exceeding
a penetration depth of about 30 nm. The origin of
this repeatable effect may be the onset of irreversible
(“plastic”) deformation (see also below).
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Figure 4 Log-log-plot of hardness versus penetration for Meyer analysis
(spherical indentation).

The hardness increases with increasing load. This
behavior is typical for materials that work harden since
deeper penetration results in higher amounts of plastic
strain. For these materials Meyer [18] found a relation
between load and contact area:

F ∼ dn/Dn; H ∼ dn−2 (19)

with denotions:d: chordal diameter of the impres-
sion; D: indenter diameter. Introducing the relation
d2= 4hp(2R− hp)≈ 8Rhp in accordance with Equa-
tion 6 we obtain

H ∼ h(n/2)−1
p ; F ∼ hn/2

p (20)

The numbern is the so called Meyer index, that
varies for “ordinary” metals between 2 (constant hard-
ness, i.e. fully work hardened material) and 2.6 (strong
work hardening, i.e. annealed material). In case of work
softeningn< 2 should be observed. For pure elastic
contacts and shallow spherical impressionsF ∼ h3/2

p

is obtained, andhp can be expressed according to
hp= d2/8R, resulting inF ∼ d3. From Equation 12 it
can be deduced thatn amounts to 3 in this case. The
Meyer indexn can be obtained from a log-log-plot of
force or hardness versus contact depth.

The application of Meyer analysis to our measure-
ment is depicted in Fig. 4. For penetration depths be-
low 30 nm a Meyer indexn1= 2.89 is found, for deeper
penetrationsn changes ton2= 2.27. The application of
Meyer analysis to quasicrystal deformation is very for-
mal, since plasticity in its common sense is not involved
in the deformation process. Nevertheless one can differ-
entiate between regions of qualitative and quantitative
differences. Sincen1 is very close to 3 it seems rea-
sonable to assume that for penetrations smaller than
30 nm the deformation is purely elastic. This predic-
tion shall be considered in the light of the force thresh-
old Fthr necessary to initiate first plastic deformation.
According to [13, 19]Fthr writes

Fthr = (9/16)(3πY)3(R/Er)
2, (21)

and the corresponding threshold in depthhp,thr is equiv-
alent to

hp,thr = (9/32)(3π )2(Y/Er)
2R≈ 25(Y/Er)

2R. (22)

Unfortunately, the yield stressY at room temperature
is not known. When applying the relation betweenY
and the macroscopic hardnessH ,

H ≈ 3Y, (23)

Y would amount to about 3 GPa. This in combi-
nation with R= 5 µm and Er≈ 200 GPa results in
Fthr= 7.9 mN andhp,thr= 28 nm in surprisingly good
agreement to the coordinates of the discontinuity inH .

3.1.3. Corner-of-a-cube nanoindentations
For this type of experiments a pyramidal diamond in-
denter with triangular cross section was used. Its ge-
ometry is that of a corner of a cube; we will speak of
CC-Berkovich for short (the denotation “Berkovich”
shall indicate that its cross section is a equilateral tri-
angle as applies to the classical “Berkovich” too). This
indenter is much sharper than the classical Berkovich
one which is best expressed by the area functionA(h),
i.e. the cross section areaA as a function of distance
h from the tip for the ideal geometry. For pyramidal
indenters with an equilateral triangle being the cross
sectionA(h) is given by

A(h) = 3× (3)1/2h2 tan2 α

=
(

3

4

)
× (3)1/2h2 tan2 β (24)

with: α: angle between the axis of the pyramid and the
axis of a side plane (apical face angle) andβ: angle
between the axis of the pyramid and an edge.

Vickers and Berkovich tester have the same idealized
area function

A(h) = 24.51h2 (25)

whereas a relation

A(h) = 1.5× (3)1/2h2 = 2.598h2 ≈ 2.6h2 (26)

applies to the CC-Berkovich indenter (α= 35.3◦,
β = 54.7◦, α+β = 90◦). Thus for equivalent load
and hardness the penetration depth of a Vickers or
Berkovich tester is (2.598/24.51)1/2= 32.6% of the
CC-Berkovich indenter only. The advantage of the
sharp CC-Berkovich geometry is, that it can be used
for both indentation and imaging of the resulting im-
pression. One must, however, admit that imaging of the
impression with the tool of impression generation is
not suitable for precise area measurement. Neverthe-
less coarse imaging using the indenter permits to posi-
tion the indents; and it is also useful for relocalization
of the impressions when scanning the impression field
later on using finer tips. The main disadvantages of the
CC-geometry are
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• the hardness values differ from measurements with
conventional geometry,
• relatively little literature data exists for compari-

son, and
• crack formation and piling up are enhanced, i.e.

assessedE-moduli are less reliable.

The Meyer hardness (mean pressure)HM can in general
be written like

HM = CY (27)

with Y denoting the plastic yield stress in simple tension
or compression, andC being a dimensionless constant
depending on the indenter geometry. In early experi-
ments of Taboret al. [7] an increase ofC with decreas-
ing apex angle of a cone was established as depicted in
Fig. 5. This also explains the hardness raise for increas-
ing penetration in Brinell tests since the “effective” apex
angle of the inserted part of the sphere gets reduced.
Thus the hardness values obtained in CC-Berkovich test
can be expected to be larger than those obtained in tests
of more blunt geometry. In Table I some representative
results of the CC-Berkovich test are summarized. The
calculation is based on an indenter modeling according
Fig. 6, i.e. a cap of a cone was fitted to the trunk of the
pyramid. The algorithm forHM and Er calculation is
the following:

From the loading-unloading-curve the depth of the
remaining plastic deformationhr after full unloading,
the total penetration depth for full loadht, and the elas-
tic recoveryδ= ht− hr are taken. The unloading curve
is fitted by a powerF ∼ hn (h: elastic penetration). Fol-
lowing the suggestion of Oliver and Pharr [20] the total
elastic recovery is then separated into two parts:δo out-
side the impression andδi inside the impression:

δo = δε/n, δi = δ(1− ε/n). (28)

TABLE I Hardness andE-modulus results for a CC-Berkovich test in AlPdMn

hr δ hp h∗p Ac
c Hc Ec

r Asp
c Hsp Esp

r

F (mN) (nm) (nm) (nm) (nm) (µm2) (GPa) (GPa) (µm2) (GPa) (GPa)

Blunting radiusR= 50 nm
6 284 72 320 344 0.308 19.5 200 0.100 60.0 349
4 220 55 248 272 0.192 20.8 220 0.078 51.3 346
2 133 40 153 177 0.081 24.7 234 0.048 41.6 303
1 57 26 70 94 0.023 43.5 338 0.022 45.5 345
0.5 23 18 32 56 0.008 61.3 306 0.010 49.7 367
Blunting radiusR= 130 nm
6 284 72 320 384 0.383 15.7 179 0.253 23.7 220
4 220 55 248 312 0.253 15.8 192 0.202 19.7 214
2 133 40 153 217 0.122 16.3 189 0.125 16.0 188
1 57 26 70 134 0.0467 21.4 237 0.0571 17.5 214
0.5 23 18 32 96 0.0240 20.9 239 0.0253 19.8 232

Most probable hardness values

F (mN) 6 4 2 1 0.5

H (GPa) 16 16 16 18 20

F : load; hr: remaining plastic depth after complete unloading;δ: elastic recovery;hp: contact depth;h∗p: contact depth extended by1h (blunting
correction),Ac: contact area;H : hardness;Er: effectiveE-modulus. The superscript c refers to the model of the pure cone, and the superscript sp
corresponds to the model of the pure sphere. The data in italics are not relevant since the considered depth region is either belowhtrans for the model
of the pure cone, or abovehtrans for the model of the pure sphere. For a blunting radius ofR= 50 nm the calculated moduli are always too high, and
no continous transition between the datasets (Ac

c, Hc, Ec
r ) and (Asp

c , Hsp, Hsp) is possible. For a blunting radiusR= 130 nm theE-moduli are in the
range of the literature data, and for a load ofF = 2 mN the considered datasets are almost equivalent.

Figure 5 Hardness (mean pressure) dependence on deformation geome-
try: The hardness expressed in units of yield strengthY (thus representing
the factorC of Equation 17) is drawn versus cone apex angle for pen-
etration of a conical indenter into a flat sample (upper curve), and for
deformation of a conical sample by a planar “indenter” (lower curve).
Experimental values for copper deformed by steel, taken from Tabor
(ref. 7). The inserted pictures shall illustrate the experimental situations.

Figure 6 CC-Berkovich indenter geometry modeling as used in this
work: the pyramidal indenter was replaced by a cone of equivalent ide-
alized area functionA(h) and fitting a cap of a sphere to its end.
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The dimensionless numberε is a geometry factor
which should be 0.72 for a conical or pyramidal in-
denter and 0.75 for a spherical or parabolic indenter
geometry. One must however admit that the geometry
influence on elastic recovery is not simply governed
by the indenter alone, but determined by the geometry
of the system (indenter+ plastically or in another way
inelastically deformed zone). Since the plastic defor-
mation zone is more or less spherical in most cases the
elastic recovery after conical or pyramidal indentation
resembles more that of a ball indentation. This is also
reflected by the power indexn, which is often close
to 1.5 instead of 2, as it should be for pointed inden-
tation [21]. In our experimentsn varied between 1.42
and 1.48, confirming, that the consideration above also
applies to quasicrystals. Forε a value ofε= 0.735 as
a compromise between the two extremes was used in
this work. The contact depth or effective plastic depth
hp is then obtained according to

hp = hr + δi = ht − δo. (29)

For the small penetrations, regarded in this work, tip
truncation must be quantitatively taken into account.
We modeled the blunted pyramidal indenter by a trunk
of a cone (apex angleαc) in such a way that pyramid
and cone have the same idealized area functionA(hp)=
2.6h2

p. Since the area function of the cone writes

A(hp) = πh2
p tan2 αc = 2.6h2

p (30)

the corresponding apex angle amounts toαc= 42.3◦.
The cone has the advantage that a cap of a sphere
can be fitted to its trunk without shape discontinuities.
Since the transition from the real indenter pyramid to
its spherical end can be expected to be comparatively
smooth the suggested modeling seems to be a reason-
able approach. The transition from sphere to cone takes
place in a heighthtrans(Fig. 6). Hence we have

htrans= q = R(1− cosα) = 0.3218R (31)

α = 90◦ − αc. (32)

A coarse value ofhtrans can also be assessed from
a discontinuity of the first derivative of the loading
curve, the low-load-part of which is nearly linear (the
loading curve of a sphere into a fully plastic body of
constant hardness is a straight line), whereas the high-
load-part is more parabolic (the loading curve of a pyra-
mid/cone into a fully plastic body of constant hardness
is a parabola). The hardness calculation requires there-
fore to decide between two situations: Forhp< htrans
the model of the pure sphere is used; the contact area
writes now

Ac = π
(
2Rhp− h2

p

) ≈ 2πRhp. (33)

For hp> htrans the area function of the ideal geome-
try of the corner of the cube can be used when adding
a height supplement1h to the contact depth to cor-
rect the data for tip blunting (Fig. 6, the superscript∗

shall indicate that the value is converted to the model
geometry):

1h = R((cosα)−1− 1)= 0.4745R (34)

h∗p = hp+1h, Ac = 2.6h∗2p . (35)

A critical point proves to be the correct blunting ra-
diusR, which was determined in an iteration procedure.
A starting value ofR was estimated from the smallest
details in the AFM images when scanning with the in-
denter. ThenR was varied around this value to best
fulfill the following criteria:

• hardness andE-modulus data for the transition
heighthtrans inferred from the trunk-of-a-pyramid
model should be equivalent to those using the pure
sphere model.
• htrans should agree to the transition between the

more linear and the more curved part of the loading
curve.
• the values ofEr should be correct. Particularly for

very small penetration depths, when larger crack-
ing is avoided, the measuredEr should converge
against the value determined as a bulk property by
nondestructive techniques (the rectangular paral-
lelepiped resonance method, e.g.).

The mentioned criteria were best fulfilled for
R= 130 nm. Literature data ofE for AlPdMn are in
the range ofE= 180–200 GPa (E= 182 GPa [17];
190 GPa [8]; 200 GPa [22]), resulting inEr= 190–
210 GPa. The apparent reduction ofEr for higher forces
may be attributed to the crack formation. The hardness
exhibits a distinct increase with decreasing load. The
absolute hardness value for 7 mN, the highest load the
electrostatic transducer can generate, is about 16 GPa,
about 70% higher than the Vickers microhardness and
about 50% higher than the Brinell ultramicrohardness
for 100 mN. Without filling the force gap between
10 mN and 1 N by Vickers andCC-Berkovich tests
one cannot say to what extend the difference is an in-
dentation size effect or an indenter shape effect, re-
spectively. The further increase of hardness to values
of about 20 GPa when reducing the load leads to the
assumption that both effects are likely to contribute to
the hardness number evolution.

The hardness increase for smaller forces may be in-
terpreted in terms of the Hall-Petch relation [23] which
was found with nanostructured materials:

H = σ0+ k0L−1/2 (36)

whereσ0 is the intrinsic stress, resisting dislocation mo-
tion, k0 a constant, andL a characteristic grain dimen-
sion. Thus the hardness increases with smaller grains.
If the deformation in quasicrystals is based on grain
boundary sliding, and if larger impression forces result
in formation of larger grains, then a mechanism similar
to that in nanostructured materials can lead to increased
ductility for higher forces.

A further source of hardness increase with decreasing
load may be the reduced number of induced cracking.

729



This was demonstrated in a recent paper of Swainet al.
who investigated the hardness of amorphous glassy car-
bon by Vickers and CC-Berkovich tests [24]. The hard-
ness could be shown to increase with decreasing apical
face angle of the indenter, which has two reasons: the
different stress fields in case of varying apex angles,
and the fact, that the sample gets more susceptible for
radial crack initiation with sharper indenters. For the
corner-of-a-cube indenter a strong indentation size ef-
fect was found: the hardness increases by about 50%
when reducing the load from 1 N toabout 20 mN, which
is similar to our findings.

3.2. Morphology of the impression
environment

Inspecting the resultant impressions by AFM reveals
drastic differences between indentations with a pene-
tration depth small compared to the radius of curvature
R of the hardness tester (type-I impressions: spherical
indentations, scratching with a spheroconical needle)
and those, where the plastic depth is much larger than
R (type-II impressions: pyramidal indentations). The
task of this section is to describe the differences and to
make an attempt of explanation.

The material displaced by the indenter cannot disap-
pear. In some rare cases transitions to phases of higher
density occur [25], in all other cases the displaced vol-
ume must be somehow “accommodated”. To some ex-
tent displaced material can be elastically accommo-
dated by trapped stresses [26], most of the displaced
matter is in general relocated in the piling-up structures.
Crystalline materials often exhibit long range surface
modifications around the indent where the displaced
material is gently smeared out over large areas.

Our AFM inspection of type-II impressions shows
that surface modifications are restricted to the close
vicinity of the indent, where considerable amounts of

Figure 7 AFM height image of a Vickers impression (left), and schematic representation of the relative position between indenter and sample (right).
The pentagon represents the position of equivalent quasicrystallographic lattice planes exhibiting two fold symmetry. The height distribution ofthe
piled up elevations can be explained by symmetry superposition of the fourfold indenter symmetry and the fivefold sample symmetry as schematically
depicted in the right drawing. The asymmetry is not due to indenter inclination as can be shown by indentations after sample rotation [27]. The
dash-dot-line indicates a mirror plane which is visible in the AFM height image, too.

material are piled up. This is easy to recognize since
the quasicrystalline structure with its missing transla-
tion symmetry does not favor material displacements
over large distances. On the other hand some degree
of ductility seems to be involved in type-I impression,
since piling up is very weak, and the outer appearance
of the impressions is similar to that of ductile crystalline
material.

3.2.1. Impressions of pointed indenters
When performing Vickers tests the material around the
indent breaks into segments which are shifted in height
by mutual shearing. This shearing occurs along radial
cracks which preferentially propagate in definite qua-
sicrystallographic directions. Fig. 7 displays an AFM
height image for a symmetric positioning of the inden-
ter with respect to the sample of fivefold symmetry,
and a qualitative attempt to explain the created struc-
tures. The image exhibits a mirror plane as can be ex-
pected from the symmetry superposition. The larger
or smaller divergence between sample and indenter di-
rections gives rise to more or less constructive stress
superposition resulting in high or less high segment up-
lifting. The morphology of Vickers impression has been
the subject of our papers [27] and [28]. The outer ap-
pearance of the indentation induced elevations around
the indent is very stable when repeating the tests but
proves extremely sensitive to sample rotation around
the specimen normal [27]. If the impression asymme-
try were due to an inclined indenter, the asymmetric
structures should remain fixed with respect to the in-
denter (i.e. fixed with respect to the image frame), if it
were due to the sample crystallography alone, it should
rotate together with the sample. We found, however,
that the impression asymmetry rotates with four times
the speed of the sample, and into opposite direction.
This was explained as an angular Moir´e effect resulting
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from the symmetry superposition of sample and inden-
ter [27, 28].

One has to ask by what mechanism the material dis-
placement proceeds if no dislocations are involved. In
accordance with the findings of Wollgartenet al. [6] we
assume a fragmentation into polygrained material fol-
lowed by subsequent grain boundary sliding. Though
no deformation mechanism on an atomic scale has hith-
erto become known the proposed process can be ex-
pected to be easier initiated than slip of dislocations in
the bulk.

The differences between type-I and type-II im-
pressions are based on different degrees of cracking,
the formation of lateral vent cracks in particular. In
type-I impressions material flow is mainly directed
into the downward direction, giving rise to formation
of extended regions of large hydrostatic constraint,
where crack nucleation is inhibited. In type-II indenta-
tions considerable displacement towards the sides oc-
cur, particularly for indenters with small apex angles.
The accomodation of this material results in residual
stresses which facilitate lateral cracking upon unload-
ing [29, 30]. The increased amount of cracking may re-
sult in fragmentation into individual grains separated by
macroscopic defects as schematically depicted in Fig. 8.
The stability of the indentation induced structures un-
der constant conditions, the preferential propagation of
cracks along crystallographic planes and the sensitivity
to azimuth orientation changes demonstrates, however,
that the fragmentation cannot be a stochastic process
but must follow well defined rules.

3.2.2. Spherical indentations
Figs 9a and b display AFM height images of spherical
impressions with loads of 0.5 and 0.1 N, respectively.
For the high load the degree of piling up and the forma-
tion of cracks are comparable to the results obtained in
case of Vickers indents. For the small load practically
no piling up can be noticed. A closer look reveals small
elevations that exhibit traces of fivefold symmetry. Nev-
ertheless the relative degree of piling up is negligible if

Figure 8 Schematic drawing of the indentation induced fragmentation
in the vicinity of a Vickers indent. Note the bending of the topmost layer
which is not subject to further disintegration.

(a)

(b)

(c)

Figure 9 Comparison of piling-up formation in case of a “heavy” spher-
ical indentation (0.5 N, 10a), a small spherical indentation (0.1 N, 10b)
and a CC-Berkovich indent (5 mN, 10c). The AFM height scales are
500 nm (10a) and 80 nm (10b and c), respectively.
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Figure 10 Comparison of cross sections through a spherical impression
(top) and a CC-Berkovich impression (bottom) displaying distinguished
differences in the relative height of piledup elevations from which also
large differences in the volume balance between displaced and reap-
peared material can be assessed.

compared to the extent obtained for high load, or in case
of pointed impressions. In a first thought this does not
seem surprising since for “normal” materials the rela-
tive degree of piling up always decreases for smaller
loads. But in our case the degree of piling up seems
not to be related to the load directly, but to the effective
apex angle of the impressed part of the indenter. Piled-
up hillocks with heights comparable to the depth of the
impression were always observed with CC-Berkovich
indentations independent on load as long as the pene-
tration depth was larger then the blunting radius.

For conventional materials a rule of thumb pre-
dicts similar degrees of piling up for similar displaced
volumes. From Fig. 10, where cross sections through
a spherical and a CC-Berkovich impression are dis-
played, one can easily conclude that this rule is not
obeyed by quasicrystals in the considered force range:
the piling up for the pointed impression is considerably
larger though the displaced volume is even smaller than
in case of the spherical one. The abundance of piling up
seems to be determined by the threshold of lateral crack-
ing depending on the nature of the sample (brittleness),
the load, and the “effective” apex angle of the indenter.
For the spherical impression a certain ratio (chordal di-
ameter/indenter diameter) must be exceeded to create
significant piling up, i.e. the load must be raised above
a certain value for a given sphere diameter.

4. Volume balance and porosity
The availability of precise height information in AFM
permits a comparison of the volume displaced by the
indenter with the volume which reappears above the

undisturbed surface. This comparison is—however—
relative, since the measurement zero level can only be
defined with respect to the surface position at the mo-
ment of measurement and not in a more generalized
way. Consequently a surface uplifting over a large area
by a small constant amount is not detectable.

In case of Vickers indentations the apparent volume
of the piled up elevations is about 30 to 40% larger than
the volume of the impression. This excessε is due to lat-
eral cracking and the formation of subsurface defects,
which could be demonstrated by secondary indentation
[27]. Furthermore a decreased contact stiffness of the
elevations was detected by force modulation technique
[27], which also gives evidence for hole formation in the
vicinity of the indent and supports the suggested mech-
anism of material displacement. For the CC-Berkovich
impressions the mentioned volume excessε of eleva-
tions is even larger: an average value isε= 140%.

The level of porosity in the vicinity of the indent can
be assessed using the following zero-order approach:
It is assumed that the defects are concentrated within a
half-sphere the diameterdaff of which is equivalent to
the diameter of the impression-modified surface area as
recognized by AFM. The volume of this half-sphere is

Vaff = (π/12)d3
aff. (37)

The volume of displaced material in case of the
square-shaped Vickers impression (side lengtha) reads

Vimp,V = a3 tan 22◦/6 (38)

and that in case of the CC-Berkovich (side lengths of
the impression triangle) is

Vimp,CC = s3/(12(2)1/2). (39)

The volume ratio between impression affected and
displaced material is then

Vaff/Vimp,V = (π/2 tan 22◦)(daff/a)3 = 3.89(daff/a)3

(40)

Vaff/Vimp,CC = π (2)1/2(daff/s)3 = 4.44(daff/s)3. (41)

The porosityP can be determined according to

P = (Velevation−Vdisplaced)/Vaffected (42)

P = (Velevation/Vdisplaced− 1)/(Vaffected/Vimpression)

(43)

P = ε/(Vaff/Vimp) (44)

with ε being the relative volume excess. For Vickers im-
pressions we obtaindaff/a= 2.5 as an average value,
resulting in P= 0.58% (ε= 35%), and for the CC-
indentationdaff/s amounts to 1.88, yieldingP= 4.8%
(ε= 140%).

Contrary to the impressions of pointed indenters the
volume balance for spherical indentation proved nega-
tive, i.e. about 70% of the displaced material is “miss-
ing”. We can therefore conclude that for increasing
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indenter apex angle the material displacement becomes
more and more restricted to the close vicinity of the
impression, where enlarged degrees of lateral cracking
and subsurface defect formation result in large porous
elevations, whereas the displaced material is smoothly
distributed over larger volumes in case of shallow spher-
ical indentations, thus not simply detectable by AFM.

5. Conclusions
The dependence of hardness on experimental condi-
tions as load (indentation size effect, ISE), temperature
(temperature softening) and loading time (creep behav-
ior) may provide information on nanoscopic processes
of inelastic deformation. We have shown elsewhere
[31] that quasicrystals exhibit a negative indentation
size effect at elevated temperatures, i.e. the hardness
raises with increasing load. This uncommon behav-
ior is a unique property of quasicrystals and may be
attributed to quasilattice failure generation during mo-
tion of phason-type dislocations. At room temperature,
however, quasicrystals behave like ordinary matter:
their hardness increases with decreasing load when test-
ing with a sharp pointed indenter. This observation is
generally explained in terms of work hardening when
crystalline matter is addressed. In case of quasicrys-
tals we attribute this property to different fragmenta-
tion sizes caused by impressions of different load: high
load—large fragments, small loads—tiny fragments.
The hardness evolution with load may then be explained
by a generalized Hall-Petch-relation according which
the hardness of polygrained material increases accord-
ing d−1/2 (d: grain diameter).

For spherical indentations an increase of hardness
(in the sense of indentation mean pressure) was ob-
served when raising the load. This seems to contradict
the statements above for a first thought. Actually this
observation fits into the picture of the established de-
formation model when having following facts in mind:

• The hardness values reported here are derived
from depth sensing, not from imaging. They rep-
resent the mean pressure inside the deformation
zone. For high loads—when the inelastic deforma-
tion zone has fully developed—a coincidence with
classical hardness—derived from mapping of the
impression—may be expected. For very small
loads the pure elastic properties are reflected! For
indentations with the sharp pointed indenter the
threshold of inelastic deformation is exceeded for
all loads reported in this paper.
• When considering pyramidal indentations the im-

pression induced fragment size is expected to
scale with a characteristic length of the impression
groove. This is, because the impression grooves are
geometrically similar. For a spherical impression
the radius of curvature of the remaining surface de-
formation can be used as corresponding length of
comparison. And this radius of curvature decreases
with increasing load: small load→ strong elastic
recovery→ shallow deformation→ small number
of cracks→ large fragment size→ small hardness.
The indentation size effect is thus described in a

more coherent manner when related to a character-
istic impression length rather than to the load.
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M. Göken, and co-workers, Universit¨at des Saarlandes,
are acknowledged for scientific support, technical assis-
tance and fruitful discussions concerning Atomic Force
Microscopy and nanoindentations with the corner-of-a-
cube indenter. One author (B. W.) would like to express
his thanks to the German Academy of Natural Scientists
Leopoldina Halle (Saale) which supported his work by
a promotion grant and financiation of equipment pur-
chase. Financial support by the “Deutsche Forschungs-
gemeinschaft” and the “Fonds der Chemischen Indus-
trie” is also gratefully acknowledged.

References
1. D. S H E C H T M A N, I . B L E C H, D. G R A T I A S and J. W.

C A H N, Phys. Rev. Lett. 53 (1984) 1951.
2. M . W O L L G A R T E N and K . U R B A N, in “Lectures on Qua-

sicrystals,” edited by F. Hippert and D. Gratias, (Les Editions des
Physiques, Les Ulis, 1994) chap. 12 p. 535.

3. S. S. K A N G , J. M . D U B O I S andJ. V O N S T E B U T, J. Mater.
Res. 8 (1993) 2471.

4. J. V O N S T E B U T, C. S T R O B E L and J. M . D U B O I S in
“Proceedings 5th Int. Conf. on Quasicrystals, Avignon, 1995,” edited
by C. Janot and R. Mosseri (World Scientific, Singapore, 1995)
p. 704.

5. M . F E U E R B A C H E R, R. R O S E N F E L D, B. B A U F E L D, M .
B A R T S C H,U. M E S S E R S C H M I D T,M . W O L L G A R T E N and
K . U R B A N, in “Proceedings 5th Int. Conf. on Quasicrystals, Avi-
gnon, 1995,” edited by C. Janot and R. Mosseri (World Scientific,
Singapore, 1995) p. 714.

6. M . W O L L G A R T E N andH. S A K A , in “New Horizons in Qua-
sicrystals: Research and Applications” (World Scientific, Singapore,
1997) p. 320.

7. D. T A B O R, Phil. Mag. A74 (1996) 1207;D. T A B O R, “The
Hardness of Solids” (Oxford University Press, Oxford, UK, 1951).

8. M . F E U E R B A C H E R, PhD thesis, Forschungszentrum J¨ulich,
Rheinisch-Westf¨alische Technische Hochschule, Aachen, 1996.

9. J. E. S H I E L D, M . J. K R A M E R andR. W. M CC A L L U M ,
J. Mater. Res. 9 (1994) 343.

10. L . B R E S S O N, in “Lectures on Quasicrystals”, edited by F. Hippert
and D. Gratias (Les Editions des Physiques, Les Ulis, chap. 13, 1994)
p. 549.

11. R H. K R A W I E T Z , personal communication, 1997.
12. B. B H U S H A N, A . V . K U L K A R N I , W. B O N I N andJ. T .

W Y R O B E K, Phil. Mag. A74 (1996) 1117.
13. J. S. F I E L D andM . V . S W A I N , J. Mater. Res. 8 (1993) 297.
14. Idem., ibid. 10 (1995) 101.
15. H. H E R T Z, J. reine u. angew. Mathematik92 (1882) 156.
16. J. E. F I E L D (eds.), “The Properties of Diamond” (Academic

Press, London, 1979).
17. K . T A N A K A , Y . M I T A R A I andM . K O I W A , Phil. Mag. A73

(1996) 1715.
18. E. M E Y E R, Z. Verein. Deutscher Ing. 52 (1908) 645.
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